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SUMMARY 

The boundary layer wind tunnel facilities, commonly used for assessing wind loads on structures, routinely match 1st 

and 2nd order statistical wind field models. However, evidence suggests that winds in the roughness sublayer and the 

inertial sublayer exhibit non-Gaussian higher-order properties. These non-Gaussian properties can influence peak 

wind pressures, which govern certain structural limit states and play an important role in design. In this project, 

machine learning methods are employed to identify relationships between roughness element configurations and 

higher-order statistical properties of the wind field. A semi-automated framework with an active learning portion and 

a wind tunnel experimental procedure is developed. The learning framework adaptively selects roughness profiles and 

launches new experiments that learn which profiles create second-order equivalent flow based on the premise that 

second-order equivalent wind fields can possess different higher-order properties that potentially can be linked to the 

roughness features of the facility. The differences in the higher-order properties can potentially exacerbate peak 

pressures and, consequently, the response of structures. The effect of these higher-order characteristics on structures 

is also studied by investigating the peak pressures on two bluff bodies under different combinations of 2nd order and 

higher-order equivalent and non-equivalent properties.  
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1. BACKGROUND AND MOTIVATION 

This ongoing research project (CMMI 1930389 & 1930625) investigates whether commonly 

achieved matching of 1st and 2nd order (mean and turbulence intensity) wind field profiles in a 

boundary layer wind tunnel (BLWT) flow is sufficient for producing consistent peak wind 

pressures. The hypothesis is that multiple roughness element configurations can produce 

equivalent second-order wind fields but different non-Gaussian higher-order properties (e.g., 

skewness and kurtosis) that may produce non-equivalent peak loads.   

 

This study harnesses the recent availability of two tools that, when used in tandem, improve the 

efficient high-volume throughput of experimental wind tunnel investigations. The control system 



 

 

for an automated, high degree of freedom, rapidly reconfigurable roughness element grid 

(‘Terraformer’ - Figure 1) and automated instrument gantry are integrated with an active machine 

learning (ML) algorithm that chooses the next roughness element configuration to investigate 

based upon an objective and the accumulated outcomes of every previous experiment. A Gaussian 

process regression based adaptive learning framework searches a bounded but flexible parameter 

space describing the possible roughness configurations to identify the subspace that corresponds 

to 2nd order equivalent boundary layer profiles. Then, we investigate the higher order 

characteristics of the parameter space to select the Terraformer configurations to test two bluff 

bodies. The next phase will then investigate the effect of the higher order characteristics in the 

peak pressures on bluff bodies.  

 

 
 

Figure 1. The University of Florida BLWT configuration 

 

 

2. IDENTIFIYING 2ND EQUIVALENT PROFILES 

The following systematic study was used to identify Terraformer configurations that produce 2nd 

equivalent turbulence profiles in the University of Florida BLWT facility. 

 

2.1. Benchmark profile 

A homogeneous baseline terrain was first established as 80 mm height for each of 1116 roughness 

elements. An automated gantry system was used to move three cobra probes to predetermined 

locations within a measurement plane to quantify the wind field and establish a benchmark 2nd 

order profile. This was repeated 25 times to quantify acceptable error bounds among the 25 

identically run experiments, i.e. define ‘statistically equivalent’ 2nd order profiles. 

 

2.2. Training set 

The Terraformer element grid height scheme was then assigned to describe as a single harmonic 

in the along wind direction rather than homogeneous, parameterized using wavenumber and 

amplitude as variables to be identified by the ML algorithm. The parameter space was divided into 

a 5x5 grid, and an experiment was conducted (wind field quantified) for each of these 25 

Terraformer configurations. The 2nd order profile from each of these was compared to the 

benchmark profile and determined to be either equivalent or non-equivalent. The outcomes were 

used to train the active ML algorithm for section 2.3. 

 

2.3. Active machine learning 

The training experiments informed the initial conditions of an active ML algorithm that was tasked 

with finding the regions of the Terraformer parameter space that produce turbulence intensity (𝐼𝑢) 

profiles that are 2nd order statistically equivalent to the benchmark profile. This combination of 

automated instrumentation, parameterized Terraformer, and active ML algorithm was then 



 

 

operated without human input, where the next experiment (next Terraformer roughness element 

configuration) was determined by the ML algorithm. The goal was to identify the region, within 

the two-parameter space, of equivalent 2nd order behavior, and then probe this region for higher 

order differences (section 2.4). After enough configurations are conducted, the equivalent second-

order parameter space emerges. Figure 2 illustrates the two-parameter space, where the equivalent 

2nd order region is the green area, and the non-equivalent second 2nd order region is the yellow 

area. In the figure, the blue stars indicate the section 2.2 Training Set, and the red dots the section 

2.3 Active Machine Learning experiments. 

 

2.4. Higher-order investigation 

Section 2.3 identified a continuum of Terraformer configurations that produce 𝐼𝑢 profiles that are 

statistically indistinguishable with respect to 2nd order characteristics (e.g., Figure 2). Referring to 

Fig 2, much of the non-second-order equivalent space (yellow) was also non-equivalent in higher 

order properties. Some cases in the second equivalent space (green) were also high-order 

equivalent. Importantly, several cases that were second-order equivalent were non-equivalent for 

their higher order properties. This provides the motivation for the next section. 

 

 
 

Figure 2. Parameter space 

 

 

3. MEASSURING PRESSURES ON BLUFF BODIES  

The next step was to investigate the effect of the non-Gaussian turbulence on the peak pressure 

coefficients measured on bluff-bodies (Figure 3.a). The two models have identical simple 

rectangular plan geometry and heights 250 mm and 500 mm. Each model was first tested with 26 

repetitions using the baseline 80 mm element configuration (Figure 3.b) to establish the baseline 

pressure and its uncertainty bounds. The benchmark test was repeated 13 times from 0 to 180 

degrees in increments of 15 degrees, then by tap symmetry it was possible to obtain the 26 time 

histories to statistically determine the peak pressure coefficients, �̂�𝑝 for the benchmark. 

 

Once the Benchmark experiment data was collected, several Terraformer configurations with 

different outcomes for second-order and higher-order profile characteristics were used to test the 

models at 0 to 90 degrees in increments of 15 degrees. The data was collected with a 512 TCU 



 

 

Scanivalve system for a duration of 2 min per direction. Once the pressure was recorded, the 𝐶𝑝
𝑝𝑒𝑎𝑘

  

was computed for each tap for analysis. 

 

 
a) 250 mm and 500 mm tall 

models 

 
b) Benchmark Terraformer 

configuration 

 
c) Single harmonic 
Terraformer configuration 

 

Figure 3. Bluff body experiments 

 

We have begun to define statistically the �̂�𝑝  of the benchmark experiment as well as the 

equivalency criteria. Once the equivalency criteria are defined, model pressures from the different 

Terraformer configurations will be compared to the benchmark pressure. We expect to complete 

this phase by early summer 2023 and be prepared to discuss findings and implications regarding 

peak pressure coefficients at the ICWE. 

 

 

4. FINDINGS AND IMPLICATIONS 

To date, studies have been carried out for several Terraformer parameterization schemes. The 

integrated experimental procedure has successfully collected profiles for 1198 unique roughness 

configurations over a period of 480 hours. Without ML, an estimated  ~10x more experiments 

would be necessary to evaluate the hypothesis. In the case of the bluff body experiments, the 250 

mm and 500 mm height models have been tested for 32 and 64 Terraformer configurations 

respectively, in addition to the 26 benchmark experiments. The data collected from the 

experiments is being curated for publication in the NHERI DesignSafe Data Repository.  
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